

CORPORATION

Exposure – Response and Drug Development in the 21st Century

Ene I. Ette, MBA, Ph.D., FCP, FCCP Anoixis Corporation Natick, MA

Leader in pharmacometric service with design and analysis like no other.

Outline

- 21st century drug development
- The Pharmacometric imperative
- Exposure response: issues of importance
- Examples
- Summary

21st Century Drug Development

- Understanding exposure response relationship and factors that affect it is crucial to mapping a drug candidate's response surface.
- Cost of drug development is not likely to decrease in the near future.
- Knowledge based drug development undergirded with Pharmacometric principles /approaches will be key to successful drug development in this century.

The Pharmacometric Imperative

- Cost drug development continues to escalate (≈\$1.4B present estimate),
- Price of computation continues to decrease rapidly
- Elementary economics would dictate
 - Spending a larger and larger fraction of our drug development (preclinical to clinical) resources on pharmacometric methodologies:
 - To enhance knowledge extraction / generation from drug development studies about a drug candidate's response surface.

Exposure – Response: Issues of Importance

- Design of studies
- Informativeness of a data analysis
 - Use of appropriate methodology
 - Model appropriateness
- Knowledge integration
- Dose choice
 - Dose
 - Dosing regimen / schedule

Informative Data Analysis: Making the Most of Study Data

Explanation for the Elevation of Safety Biomarker Needed

.

The Need to Understand the Safety of a Drug Candidate

Questions:

- Can an adverse effect (i.e. elevation in a safety biomarker level) seen during drug development trials be explained?
 - Is there knowledge hidden in trial data sets that can be discovered to explain the adverse effect?
 - What would be the effect of a higher dose (600 mg), not previously studied?
- Available Information:
 - Data from 3 trials (2 in 50 healthy subjects and 1 in 60 patients)
 - Safety biomarker data
 - PK data
 - Doses studied: 75 to 450 mg bid

No Apparent Relationship between Exposure Metrics and Biomarker

9

Distribution of AUC Values

(Chu & Ette, 2007)

Leader in pharmacometric service with design and analysis like no other. © 2008 Anoixis Corporation

noixis

CORPORATION

10

Understanding of Drug Safety: Duration Above an AE Grade

Exposure-Response Curves Characterized by % of Duration Above Grade 1 Adverse Event

Predicted Probability of Biomarker Elevation for Higher Doses Compared with the 300 mg bid Regimen

	· ··· ··· ··· ··· ··· ··· ··· ··· ···	0.000			
F	ligh Baselir	ne		_	
	mean (SD)				
	450 mg	525 mg	600 mg		300 mg
any occurrence	74 (5.03)	76 (4.94)	79 (4.80)		62 (5.76)
10% of Duration	72 (5.74)	75 (5.59)	79 (5.37)		55 (5.37)
20% of Duration	58 (7.35)	62 (7.41)	66 (7.36)		42 (5.3)
30% of Duration	56 (6.25)	60 (6.47)	63 (6.61)		39 (5.11)
40% of Duration	56 (6.98)	60 (7.20)	65 (7.30)		39 (5.22)
50% of Duration	48 (7.83)	52 (8.30)	56 (8.65)		31 (4.57)

Proh of having Grade 1

Prob. of having Grade 2

. н	ligh Baselir	ne		_	
	mean (SD)				
	450 mg	525 mg	600 mg		300 mg
any occurrence	58 (7.58)	63 (7.71)	67 (7.71)		40 (4.65
10% of Duration	50 (6.37)	55 (6.77)	59 (7.07)		35 (4.81
20% of Duration	35 (6.42)	39 (7.04)	42 (7.65)		24 (3.8)
30% of Duration	35 (5.67)	38 (6.28)	41 (6.90)		23 (4.12
40% of Duration	36 (5.96)	40 (6.56)	44 (7.11)		
50% of Duration	35 (6.47)	38 (7.24)	42 (8.01)		

Prob. of having Grade 3

ŀ	ligh Baselir	ne		_	
		mean (SD)			
	450 mg	525 mg	600 mg		300 mg
any occurrence	26 (6.87)	29 (7.98)	33 (9.06)		17 (3.53)
10% of Duration	14 (4.08)	15 (4.6)	17 (5.17)		9 (2.69)
20% of Duration	11 (4.43)	12 (5.03)	13 (5.73)		7 (2.62)
30% of Duration					

Summary

- Efficient and informative study designs are indispensable to informative data analysis.
- It is important to deploy methodologies that permit the utmost extraction of hidden knowledge from study data.
- Pharmacometric knowledge integration is important in exposure-response analysis for the characterization of a drug candidate's response surface.
- Defining and using appropriate doses and regimens are crucial to the success of a drug development program.
- 21st century drug development must be knowledge based and under-girded with Pharmacometric principles /approaches.

Reference

 Chu H-M, Ette EI. The Confluence of Pharmacometric Knowledge Discovery and Creation in the Characterization of Drug Safety. In: *Pharmacometrics: the Science of Quantitative Pharmacology*. Ette EI, Williams PJ (eds). Hoboken: John Wiley & Sons, 2007, pp 1175-1196.

Acknowledgement

- Hui-May Chu, MBA, Ph.D.
- CJ Godfrey, Ph.D.

Thank You

Leader in pharmacometric service with design and analysis like no other. © 2008 Anoixis Corporation